6. REAL AND COMPLEX
NUMBERS

86.1. Fractions

The next stage in our
development of the complex
number system is to develop
fractions or positive rational
numbers. This mirrors the
historical development of numbers because negative
numbers came much later than fractions.

The concept of a fraction is quite sophisticated and
it’s no wonder that school students have so much trouble
with them. For a start, what is a fraction? If you can do no
better than talk about cutting up a cake into equal parts
then your knowledge of fractions is somewhat
underdeveloped.

At first glance a fraction is a pair of natural
numbers. But then we talk about equivalent fractions.

Different pairs can represent the same number, as in

6_ 3 - i
g = 2 So fractions are more complicated than number

pairs.

For a start we’ exclude zero. We’ll bring it in at a
later stage. So we begin by taking M = N — {0} to be the
set of non-zero natural numbers. Then we form M x M,
the set of ordered pairs (m, n) of non-zero natural

numbers.
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Now we define the relation ~ on this set: (a, b) ~ (c,
d) if ad = bc.
The first thing to do is to check that this is an equivalence
relation, that is, it is reflexive, symmetric and transitive.

Theorem 1: The relation ~ is an equivalence relation.
Proof: Reflexive: (a, b) ~ (a, b) since ab = ba.
Symmetric: Suppose (a, b) ~ (c, d).

Then ad = bc and so cb = da.

Hence {c, d) ~ (a, b).

Transitive: Suppose (a, b) ~ (c, d) and (c, d) ~ (e, f).
Then ad = bc and cf = de.

Hence (ad)(cf) = (bc)(de)

. (af)(cd) = (be)(cd)

.. af = be (Remember that c, d are non-zero.)
s(ab)~(e ). YO

The set M x M thus decomposes into equivalence
classes and these are our fractions. We’ll use the term
fraction for what we’d normally call a positive rational
number. Negative rational numbers will come later.

We denote the equivalence class containing the ordered
: - m
pair (m, n) by the familiar symbol PR
Possibly we should have written the equivalence classes
. m : :
as [m, n] instead of - The danger is to use things you

learnt in primary school instead of justifying them. So it
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IS true that g~ 4 ,

top and bottom by 2, but because 6 x 4 =3 x 8.

Now we must define addition and multiplication,
not of the ordered pairs, but of the equivalence classes.
This involves what are called “checks of well-defined-
ness”.

for example, but not because we cancel

+
We deflne bt % = adbdbc . This is something that any

high-school student would recognise. But remember
these fractions are equivalence classes of ordered pairs.
We have now to check that this is a proper definition. The
same fraction can be expressed using different natural
numbers. There is the possibility of getting different
answers by choosing different representations.

_70+45_ 115

10 3
Example 1: =Y7 = 105 —105 @ and
2 N 6 _28+18_46
3 14 42 T 42
2 _6
Yet E 3 and Z=17450 the answers should be the same.

They look dlfferent, and in fact as ordered pairs they are
diﬁerent

But ﬁ IS equivalent to % since
115 x 42 = 4830 = 105 x 46.
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Of course you would probably have cancelled common

factors of each fraction, and this is easily justified. So that

115 _ 23 _ 46
we would say that 5= 105-21- 22

Probably this would have once convinced you. But
now you should be saying that at least sometimes the
definition works properly. But does it always work? To
prove that it does we repeat the above exercise with
general fractions.

Theorem 2: Addition of fractions is well-defined.
a’ a c’

Proof: Suppos o~ Db and q -

Then a’b=b'aandc'd=d'c.

a c _ad+hbc
Nowb d> " bd and

oo

g’+c_' _ad’'+b'c
b’ d’ b'd’
We need to check that:
(ad + bc)(b’d ") = (@'d ’ + b’c’)(bd).
The LHS = adb’d ' + bcb'd’
= (b'a)(dd ") + (d 'c)(bb")
= (a’b)(dd ") + (c'd)(bb")
= (a’'d ")(bd) + (b’c’)(bd)
= RHS. %©
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We define the product of two fractions by %. % = %.

Again we need to check that this is well-defined.

Theorem 3: Multiplication of fractions is well-defined.

a _a c ¢
Proof: Suppos b =D and 4 -d
Thena'b=b'aandc'd=d"c.

a c _ac a ¢ _ac
NowB.a = bd and o'd —bd
Finally,(ac)(b'd ") = (b’a)(d 'c) = (a’b)(c’'d) = (a’c’)(bd), so
the products are the same. % ©

86.2. The Arithmetic of Fractions

We now have to prove all the familiar properties of
the positive rational numbers. These make constant use
of the corresponding laws for natural numbers.

Theorem 4: Addition and multiplication of fractions is
commutative and associative.

Proof: The commutative laws for addition and
multiplication are obvious from the symmetry of the
definitions. The associative laws are a little less obvious.

Associativity of Addition:
(g gj e ad+bc e _(ad +bc)f + bde
b d)"fT bd "7 bdf -
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§+(g+gj g+cf+de_adf+b(cf+de)
b \d f) b df bdf '
These answers are equal because:

(ad +bc)f + bde = adf + b(cf + de).

Associativity of Multiplication:
(a cj e ace ace

b'd)f ~ bdf ~ bdf"

a [9 9} _ace_ace

b\d'f) ~ bdf ~ bdf"

Here the ordered pairs are identical, not just equivalent.
%©

Theorem 5: Multiplication of fractions is distributive
over addition.

~a(c e} _afcf+de) a(cf+de)
Proof: b'(d + fj = b'( of j- bdf -

ac ae _ ac.bf + bd.ae

bd bt~ b?df
In this case the ordered pairs are different. You probably
would have justified the equality of these expressions by
‘cancelling by b’, and that can be justified. However we

observe that (acf + ade).b?df = bdf (acbf + bdae). % ©

As we’ve constructed them, the set of positive
natural numbers is not a subset of the set of fractions. The
former are finite sets while the latter are equivalence
classes of pairs of natural numbers and hence are infinite
sets. But we identify the positive natural number n with
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the fraction % which in turn consists of all the ordered

pairs (kn, k) for all non-zero natural numbers k. But to
justify this we’d to check that the fractions of the form 2
behave like the natural numbers n themselves.

m ml+ln m+n

n

171 11 =1 and
mn_mn_mn
1'1-11 -1

So the system of fractions contains within in it a working
model of the natural numbers.

Example 2: The numbers 2, as a natural number, is

different to the fraction %even though it behaves in the

same way as both and even though we happily blur the
distinction in normal mathematics.

As a natural number 2 = {J, {Z}}.

2

As a fraction 2 is 1- {(2k, k) |k € N — {0}}

=1{2,1),4,2),(6,3),...}
Just the first element in this list is
(2,1) ={{2}, {1, 2}}
={{{<, {11}, {<}, {<G, {111}

Division of fractions is now defined in the usual
way — invert and multiply — and the usual properties of
division are now easily verified.
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§6.3. The Order Relation for Fractions

We now define the ordering of the fractions.

We deflne < < q if ad < bc.

Theorem 6: The order relation is well-defined.
Proof: Suppose % b and % = g :
Thena’b=b'aandc'd=d’c.

We must show that ad < bc if and only if a’'d ' < b’c’.
Suppose ad < bc.

Then (ad)(a’d ') < (bc)(a’'d ).

But (bc)(@'d ") = (a’'b)(d 'c) = (ab’)(dc") = (ad)(b'c").
Hence (ad)(a’'d ") < (ad)(b'c’) and so a’'d ' <b'c’. %©

86.4. Positive Real Numbers

Having constructed fractions, that is, the positive
rational numbers, we now turn our attention to creating
the positive real numbers. We can’t define these as
numbers that represent points on the positive part of the
real axis because this requires geometric intuition. We
could define them in terms of decimal expansions, though
this would become clumsy when it came to defining
addition and multiplication. They are often defined as
limits of convergent sequences of rational numbers. In
keeping with our principle that every mathematical object
has to be a set we’ll define them as sets of rational
numbers with certain properties.
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A relation R is anti-symmetric if XRy A yRx — x =V.

A partial order on a set S is a relation that is reflexive,
anti-symmetric and transitive.

A partially ordered set is a set together with a partial
order <,

An upper bound for a subset X of S, if one exists, is an
element u € S such that
VX[x € X —> x<u].

A greatest element for X, if it exists, is an upper bound
for X that is an element of X. Clearly, if it exists, it is
unique.

A subset X is an initial segment if
VXVY[(x € X) A (y<Xx) = (y € S)].

Example 3: On the set Q" of positive rational numbers

X1 = Q" has no upper bound,;

X2 = N has no upper bound,;

X3 ={x € Q" | x> < 2} has upper bounds, such as 2,
and 200, but it doesn’t have a greatest element.

X4 = {X | x? + 6 = 5x} has a greatest element, namely 3.
(The quadratic x? — 5x + 6 has two zeros, 2 and 3.)

Xs = & has upper bounds (in fact every element) but no
greatest element.
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Xe = {x | x* < 4} has upper bounds and a greatest
element.
X1, X3, X5 and Xg are initial segments.

A positive real number is a non-empty initial segment of
Q™ that has an upper bound but no greatest element.

Since a positive real number is a subset of Q *, it is
a set. And the class of all positive real numbers is a subset
of Q" and so is a set. We denote this by the symbol R".

Example 4: Of the above subsets of Q" only X3 qualifies
as a positive real number. This we’ll identify with the real
number V2. X; has no upper bound, Xs is empty and X
has a greatest element.

If X, Y are positive real numbers we define X + Y,
XY and X <Y in terms of their elements as follows:
X+Y={x+y|xe X, yeY}
XY ={xy|xeX,ye Y}
X<Yifandonlyif X .

Theorem 7: If X, Y are positive real numbers then so are
X +Y and XY.
Proof: Suppose that X, Y are positive real numbers.
Clearly X +Y and XY are non-empty.
If u is an upper bound for X and v is an upper bound for
Y then u + v and uv are clearly upper bounds for X + Y
and XY respectively.
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Letx+ye X+Y.

Since X, Y have no maximum elements, there exist

X1 € Xandy; € Ysuchthatx <x;andy <y;.
Hencex+y<x;+y; e X+Y.

Similarly for multiplication.

Finally we must show that X + Y and XY are initial
segments.

Letu=x+ywherex e Xandy € Y and letv <u.

Multiplication is a little trickier. Let u = xy and
letw=u-v>0.
We want to find x; and y; such that v = x;y; and
O<xp<xand0<y;<y.
Write x;=x—aandy; =y-b.
We wantv = (x—a)(y—Db)
=xy — (ay + bx) + ab
=u-—(ay +bx) +ab
sow=ay +bx—ab. %©

If we chose any b and defined a = V;%EX then:

ay + bx — ab would equal to w and so, working backwards,
v=(x—-a)(y—b) e XYV.

This would be fine over Q, provided b =y but since
we are working over Q" we must ensure that
w — bx, x —a and y — b are all positive. The fact that v and
y — b are positive will ensure that x — a is positive so we
only need to worry about w — bx and y — b.
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We can achieve this by taking b = MIN(%, %j and
_ W —Dbx
a= y—b -

We can verify that indeed v = (x — a)(y — b) € XY.

The usual associative, commutative and distributive
properties can easily we deduced from the corresponding
properties for positive rational numbers. An important
property of the real numbers is completeness — something
that distinguishes it from the rational numbers.

Theorem 8 (COMPLETENESS): Every non-empty
subset of the rational numbers that has an upper bound has
a least upper bound.

Proof: At this stage we can only prove it for the positive
reals.

Suppose that X is such a non-empty subset of R* that is
bounded above.

We have to work with sets at several levels.
Positive rationals will be denoted by lower case letters.
Positive real numbers are sets of positive rationals and
will be written in upper case. Finally X is a set of positive
reals, which is why we use a Greek symbol. | hope this
will help to make it all clear!

We must prove that UZ is a positive real. So in
anticipation we will denote it by the symbol S.
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S =uUZ is non-empty:

Let X € £ (OK as Z is non-empty).

X is a positive real number and so, by definition, it is non-
empty.

Letx € X. Then x € UZ.

S =uUZX is bounded above:

¥ is bounded above.

Let M be an upper bound for X. This means that every
element of X is less than or equal to M.

Now M is a positive real and so is a set of positive
rationals.

By definition it is bounded above, say by the rational
number m.

Letx € S=UZ. Then x € X for some X € %.

Since M is an upper bound for X, X < M, in other words,
Xc M.

Hence x € M. Since m is an upper bound for M, x <m.

It follows that m is an upper bound for S = UX.

S =uZ is an initial segment:

Letx e Sand lety < x.

Then x € X for some X € S.

Now, being a positive real, X is an initial segment and so
y e X.

Hencey € S = UZ,

This completes the proof that WX is a positive real
number.
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S =uUZ is an upper bound for X.

Let X € . Then X c S.

But, for positive reals, this is the same as less than or
equals. That is, X <S.

S =X is the least upper bound for X.

Suppose that T is an upper bound for X.

Letx € S. Then x € X for some X € X.

Since T is an upper bound for £, X < T.

But X, T are positive reals and so this translates to
XcT.Hencex e T.

SoS c T, which translatesto S< T.

So S is the least upper bound for . % ©

We can now show that for a positive rational

number g the corresponding positive real number:
{x|x<a}

behaves exactly like the positive rational number itself

and so we associate g with {x | x < g}. Within the positive

real numbers we have a copy of the positive rational

numbers.

Hence the multiplicative identity of the positive
reals is {x | x < 1} which we associate with the rational
number 1. And the positive real {x | x* < 2} has the
property that its square is {x | x < 2} which we associate
with the rational number 2. So we denote {x | x? < 2} by
V2 and note that indeed it is the (positive) square root of
2.
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We saw that the fraction 2, as we have defined it, is
rather more complicated, when expressed in terms of the
empty set, than the natural number 2. The real number 2

) ) a
Is even worse! It’s the set of all fractions b where a < 2b.

Just one of these elements is g This in turn is the set of

all ordered pairs of the form (3k, 2k). One of these
elements is (3, 2) which is {{3}, {2, 3}}. Finally, one of
these two elements is {2, 3} which is {{J, {J}}, {9,

19} {9, {T}}}3}

But, as before, we don’t have to be embroiled in
these complexities. It’s sufficient for us to be aware that
everything we construct can be built up from the empty
set. But whenever we have occasion to use the number 2
in a piece of mathematics we don’t have to worry whether
it is the real number 2, the rational number 2, or the
natural number 2. They are all identified with one another
and can be treated as if they are the same thing.

There are many other properties that ought to be
investigated but that is done in a standard course on
analysis. Many of these follow from the completeness of
the positive reals which we have proved. But now we
move on to negative numbers.
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§86.5. Zero and Negative Real Numbers

The construction that takes us from the positive real
numbers to the whole real line is similar to the one that
that took us from the natural numbers to the positive
rationals. We take pairs of real numbers and define an
equivalence relation. The real numbers are simply the
equivalence classes.

The pair (a, b) will ultimately represent a — b
which, depending on the relative sizes of a, b can give
positive, negative or zero real numbers. But because the
representation as a — b is not unique we must take
equivalence classes.

So take the set R* x R" to be the set of all pairs of
positive real numbers and define the relation = as follows:
(a,b)=(c,d)ifandonlyifa+d=Db+c.
| leave it as an exercise to prove that this is indeed an
equivalence relation. Let (x, y) denote the equivalence

class containing (x, y). Soifa+d=b + c then
(a, b) ={c, d).
Define addition, multiplication and ordering by:
(a, b) +{(c,dy=(a+c,b+d)
(a, b). (c, d)=(ac + bd, ad + bc);
(a,by<{c,dyifa+d<b+c.

These definitions are motivated by the fact that:
(@a-b)-(c-d)=(a+c)-(b-d)
(a—b).(c—d) =(ac + bd) — (ad + bc) and
a—-b<c-difandonlyifa+d<b+c.
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You know what lies ahead. We must show that
these operations are well-defined and that the associative,
commutative properties hold as well as all the other
elementary properties. We don’t need to actually do this,
except as an exercise. The main thing is to be convinced
that it can be done!

We might be tempted to identify the positive real
numbers with those real numbers of the form [x, 0] but, of
course 0 is not positive. Instead we must identify
(x+1, 1) with x.

Theorem 9: F:R™ — R defined by F(x) = (x + 1, 1) takes
sums to sums and products to products.
Proof:
FO)+FY) =x+1,1)+(y+1,1)
=(X+y+22)
=(x+y+1,1)since
xX+y+2)+1=(x+y+1)+2
=F(x +y).
FOOF(y) =(x+ 1, 1]y + 1, 1)
=(x+ Dy +1)+1,x+1)+(y+1))
=(Xy+x+y+2,x+y+2)
=xy+1,1)
= Fxy).

99



86.6. Complex Numbers

We’re almost there. The last stage in the
development of our number system is to extend the real
numbers to the system of complex numbers, C. This is by
far the easiest stage of all. We define a complex number
to be a pair of real numbers. There is no equivalence
relation, and no equivalence classes needed. Complex
numbers are just the pairs themselves, which we will write
as [x, y] instead of the usual (x, y) to make it look more
like the previous stages.

A complex number is a pair of real numbers [x, y].
Keeping in mind that we’ll eventually identify this with x
+ iy, where i = -1, we make the following definitions:

[a,b] +[c,d]=[a+c, b+d];
[a, b] . [c, d] =[ac — bd, ad + bc];

Note that we don’t define an ordering. There is no
order relation that’s consistent with these algebraic
operations.

We identify the complex numbers of the form [x, 0] with
the corresponding real numbers x and note that they
behave the same.
[x, 0] +[y,0] = [x+y,0+0] =[x+y, 0] and

[x, 01y, 0] =[xy — 0, 0 + 0] = [xy, O].
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The multiplicative identity is [1, 0], which we
identify with the real number 1 and we define i = [0, 1].
Note that i = [-1, 0] which we identify with —1.

The fact that [x, y] =[x, 0] + [0, 1].[y, 0] means we
can identify [x, y] with x + ly.

All that remains is to check out the basic properties
of complex numbers and we’re finished. But probably by
now you’re thoroughly bored with the whole process and
are quite happy in just accepting the assurance “believe
me, it works!”

Throughout all this construction, the various types
of numbers are sets and sets of sets and sets of sets etc, all
built out of the empty set. We started with the natural
numbers and extended it to the positive rationals, then to
the positive reals, then to all the reals and finally to the
complex numbers.

N->Qt>Rt—->R—->C

It is interesting that this corresponds to the order in
which these number systems were developed historically.
As we’ve constructed them these sets are not
subsets of one another. But within each we can identify a
subset that we can identify with the previous one, and so
we consider these to be nested as follows:
NcQtcRtcRcC
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Example 5: The complex number 2 is

[2, 0] = {{2}, {2, 0}} where O, 2 are in R.

The real number 2is {(3 +k, 1 + k) |k € R+}
={{3+Kk} {1 +k 1+k}}wherel, 3. karein R+,

The positive real number 3 is the set {x € Q* | x < 3}

where 3isin Q*.

The positive rational number 3 is% which is

{8k, K) | k e N} = {{{3Kk}, {3k, k}} | k € N}
where 3, k are in N.
The natural number 3 is {0, 1, 2}

={4, {4}, {4}, {9, {F}}3}-

To give a map of where we’ve come, here are the
universes in which each number lives. Remember that
sets of elements of S are in @S and pairs of elements of
Sare in ©2S and equivalence classes of pairs of elements
of Sarein p°S.

Numbers are elements of
natural numbers | N

positive rationals | o3 N

positive reals 4N

reals ©’N

complex numbers | 09N
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