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6. REAL AND COMPLEX 

NUMBERS 
 

§6.1. Fractions  
 The next stage in our 

development of the complex 

number system is to develop 

fractions or positive rational 

numbers. This mirrors the 

historical development of numbers because negative 

numbers came much later than fractions. 

 The concept of a fraction is quite sophisticated and 

it’s no wonder that school students have so much trouble 

with them. For a start, what is a fraction? If you can do no 

better than talk about cutting up a cake into equal parts 

then your knowledge of fractions is somewhat 

underdeveloped. 

 At first glance a fraction is a pair of natural 

numbers. But then we talk about equivalent fractions.  

Different pairs can represent the same number, as in 
6

8
 = 

3

4
 . So fractions are more complicated than number 

pairs. 

 For a start we’ exclude zero. We’ll bring it in at a 

later stage. So we begin by taking M = ℕ − {0} to be the 

set of non-zero natural numbers. Then we form M  M, 

the set of ordered pairs (m, n) of non-zero natural 

numbers. 
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Now we define the relation ~ on this set: (a, b) ~ (c, 

d) if ad = bc. 

 The first thing to do is to check that this is an equivalence 

relation, that is, it is reflexive, symmetric and transitive. 

 

Theorem 1: The relation ~ is an equivalence relation. 

Proof: Reflexive: (a, b) ~ (a, b) since ab = ba. 

Symmetric: Suppose (a, b) ~ (c, d). 

Then ad = bc and so cb = da. 

Hence {c, d) ~ (a, b). 

Transitive: Suppose (a, b) ~ (c, d) and (c, d) ~ (e, f). 

Then ad = bc and cf = de. 

Hence (ad)(cf) = (bc)(de) 

 (af)(cd) = (be)(cd) 

 af = be (Remember that c, d are non-zero.) 

 (a, b) ~ (e, f). ☺ 

 

 The set M  M thus decomposes into equivalence 

classes and these are our fractions.  We’ll use the term 

fraction for what we’d normally call a positive rational 

number. Negative rational numbers will come later. 

 

We denote the equivalence class containing the ordered 

pair (m, n) by the familiar symbol 
m

n
 . 

Possibly we should have written the equivalence classes 

as [m, n] instead of 
m

n
 . The danger is to use things you 

learnt in primary school instead of justifying them. So it 
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is true that 
6

8
 = 

3

4
 , for example, but not because we cancel 

top and bottom by 2, but because 6  4 = 3  8. 

Now we must define addition and multiplication, 

not of the ordered pairs, but of the equivalence classes. 

This involves what are called “checks of well-defined-

ness”. 

We define 
a

b
 + 

c

d
  = 

ad + bc

bd
 . This is something that any 

high-school student would recognise.  But remember 

these fractions are equivalence classes of ordered pairs. 

We have now to check that this is a proper definition. The 

same fraction can be expressed using different natural 

numbers. There is the possibility of getting different 

answers by choosing different representations. 

  

Example 1: 
10

15
 + 

3

7
  = 

70 + 45

105
 = 

115

105
  and 

                     
2

3
 + 

6

14
  = 

28 + 18

42
 = 

46

42
 . 

Yet 
10

15
 = 

2

3
 and 

3

7
 = 

6

14
 so the answers should be the same. 

They look different, and in fact as ordered pairs they are 

different. 

But 
115

105
 is equivalent to 

46

42
  since 

115  42 = 4830 = 105  46. 
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Of course you would probably have cancelled common 

factors of each fraction, and this is easily justified. So that 

we would say that 
115

105
 = 

23

21
 = 

46

42
 . 

 

  Probably this would have once convinced you. But 

now you should be saying that at least sometimes the 

definition works properly. But does it always work? To 

prove that it does we repeat the above exercise with 

general fractions. 

 

Theorem 2: Addition of fractions is well-defined. 

Proof: Suppose 
a

b
 = 

a

b
  and  

c

d 
 = 

c

d
 . 

Then ab = ba and cd = d c. 

Now 
a

b
 + 

c

d
  = 

ad + bc

bd
  and  

       
a

b
 + 

c

d 
  = 

ad  + bc

bd 
 . 

We need to check that: 

(ad + bc)(bd ) = (ad  + bc)(bd). 

The LHS = adbd  + bcbd  

                = (ba)(dd ) + (d c)(bb) 

                = (ab)(dd ) + (cd)(bb) 

                = (ad )(bd) + (bc)(bd) 

                = RHS. ☺ 
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We define the product of two fractions by 
a

b
 . 

c

d
  = 

ac

bd
 . 

Again we need to check that this is well-defined.  

 

Theorem 3: Multiplication of fractions is well-defined. 

Proof: Suppose 
a

b
 = 

a

b
  and  

c

d 
 = 

c

d
 . 

Then ab = ba and cd = d c. 

Now 
a

b
 . 

c

d
  = 

ac

bd
  and  

a

b
 . 

c

d 
  = 

ac

bd 
 . 

Finally,(ac)(bd ) = (ba)(d c) = (ab)(cd) = (ac)(bd), so 

the products are the same. ☺ 

 

§6.2. The Arithmetic of Fractions  
 We now have to prove all the familiar properties of 

the positive rational numbers.  These make constant use 

of the corresponding laws for natural numbers. 

 

Theorem 4: Addition and multiplication of fractions is 

commutative and associative. 

Proof: The commutative laws for addition and 

multiplication are obvious from the symmetry of the 

definitions. The associative laws are a little less obvious. 

 

Associativity of Addition: 







a

b
 + 

c

d
 + 

e

f
  = 

ad + bc

bd
 + 

e

f
  = 

(ad +bc)f + bde

bdf
 . 
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a

b
 + 







c

d
 + 

e

f
  = 

a

b
 + 

cf + de

df
 = 

adf + b(cf + de)

bdf
 . 

These answers are equal because: 

(ad +bc)f + bde = adf + b(cf + de). 

 

Associativity of Multiplication: 







a

b
.
c

d
.
e

f
  = 

ac

bd
.
e

f
  = 

ace

bdf
 . 

 
a

b
.






c

d
.
e

f
  = 

a

b
.
ce

df
 = 

ace

bdf
 . 

Here the ordered pairs are identical, not just equivalent. 
☺ 

 

Theorem 5: Multiplication of fractions is distributive 

over addition. 

Proof: 
a

b
.






c

d
 + 

e

f
 = 

a

b
.






cf + de

df
 = 

a(cf + de)

bdf
 . 

           
a

b
.
c

d
 + 

a

b
.
e

f
  = 

ac.bf + bd.ae

b2df
 . 

In this case the ordered pairs are different. You probably 

would have justified the equality of these expressions by 

‘cancelling by  b’, and that can be justified. However we 

observe that (acf + ade).b2df = bdf (acbf + bdae). ☺ 

 

 As we’ve constructed them, the set of positive 

natural numbers is not a subset of the set of fractions. The 

former are finite sets while the latter are equivalence 

classes of pairs of natural numbers and hence are infinite 

sets. But we identify the positive natural number n with 
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the fraction 
n

1
 , which in turn consists of all the ordered 

pairs (kn, k) for all non-zero natural numbers k. But to 

justify this we’d to check that the fractions of the form 
n

1
  

behave like the natural numbers n themselves. 
m

1
 + 

n

1
  = 

m.1 + 1.n

1.1
  = 

m + n

1
  and 

m

1
. 
n

1
  = 

m.n

1.1
  = 

mn

1
 . 

So the system of fractions contains within in it a working 

model of the natural numbers. 

 

Example 2: The numbers 2, as a natural number, is 

different to the fraction 
2

1
 even though it behaves in the 

same way as both and even though we happily blur the 

distinction in normal mathematics. 

As a natural number 2 = {, {}}. 

As a fraction 2 is 
2

1
  = {(2k, k) | k  ℕ − {0}} 

                                = {(2, 1), (4, 2), (6, 3), …} 

Just the first element in this list is 

(2, 1) = {{2}, {1, 2}} 

          = {{{, {}}}, {{}, {, {}}}}. 

 

 Division of fractions is now defined in the usual 

way – invert and multiply – and the usual properties of 

division are now easily verified. 
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§6.3. The Order Relation for Fractions  
We now define the ordering of the fractions. 

We define 
a

b
  

c

d
  if ad  bc. 

 

Theorem 6: The order relation is well-defined. 

Proof: Suppose 
a

b
 = 

a

b
  and  

c

d 
 = 

c

d
 . 

Then ab = ba and cd = d c. 

We must show that ad  bc if and only if ad   bc. 

Suppose ad  bc. 

Then (ad)(ad )  (bc)(ad ). 

But (bc)(ad ) = (ab)(d c) = (ab)(dc) = (ad)(bc). 

Hence (ad)(ad )  (ad)(bc) and so ad   bc. ☺ 

 

§6.4. Positive Real Numbers 
Having constructed fractions, that is, the positive 

rational numbers, we now turn our attention to creating 

the positive real numbers. We can’t define these as 

numbers that represent points on the positive part of the 

real axis because this requires geometric intuition. We 

could define them in terms of decimal expansions, though 

this would become clumsy when it came to defining 

addition and multiplication. They are often defined as 

limits of convergent sequences of rational numbers. In 

keeping with our principle that every mathematical object 

has to be a set we’ll define them as sets of rational 

numbers with certain properties. 
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A relation R is anti-symmetric if xRy  yRx → x = y. 

 

A partial order on a set S is a relation that is reflexive, 

anti-symmetric and transitive. 

 

A partially ordered set is a set together with a partial 

order . 

 

An upper bound for a subset X of S, if one exists, is an 

element u  S such that 

x[x  X → x  u]. 

 

A greatest element for X, if it exists, is an upper bound 

for X that is an element of X. Clearly, if it exists, it is 

unique. 

 

A subset X is an initial segment if 

xy[(x  X)  (y < x) → (y  S)]. 

 

Example 3: On the set ℚ+ of positive rational numbers 

X1 = ℚ+ has no upper bound; 

X2 = ℕ has no upper bound; 

X3 = {x  ℚ+ | x2 < 2} has upper bounds, such as 2, 

         and 200, but it doesn’t have a greatest element. 

X4 = {x | x2 + 6 = 5x} has a greatest element, namely 3. 

          (The quadratic x2 − 5x + 6 has two zeros, 2 and 3.) 

X5 =  has upper bounds (in fact every element) but no 

         greatest element. 
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X6 = {x | x2  4} has upper bounds and a greatest 

                                                                           element. 

X1, X3, X5 and X6 are initial segments. 

 

A positive real number is a non-empty initial segment of 

ℚ+ that has an upper bound but no greatest element. 

 

 Since a positive real number is a subset of ℚ +, it is 

a set. And the class of all positive real numbers is a subset 

of ℚ+ and so is a set. We denote this by the symbol ℝ+. 

 

Example 4: Of the above subsets of ℚ+ only X3
  qualifies 

as a positive real number. This we’ll identify with the real 

number 2. X1 has no upper bound, X5 is empty and X6 

has a greatest element. 

 

 If X, Y are positive real numbers we define X + Y, 

XY and X  Y in terms of their elements as follows: 

X + Y = {x + y | x  X, y  Y}; 

     XY = {xy | x  X, y  Y}. 

        X  Y if and only if X  Y. 

 

Theorem 7: If X, Y are positive real numbers then so are 

X + Y and XY. 

Proof: Suppose that X, Y are positive real numbers. 

Clearly X + Y and XY are non-empty. 

If u is an upper bound for X and v is an upper bound for 

Y then u + v and uv are clearly upper bounds for X + Y 

and XY respectively. 
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Let x + y  X + Y. 

Since X, Y have no maximum elements, there exist 

x1  X and y1  Y such that x < x1 and y < y1. 

Hence x + y < x1 + y1  X + Y. 

Similarly for multiplication. 

Finally we must show that X + Y and XY are initial 

segments. 

Let u = x + y where x  X and y  Y and let v < u. 

 

Multiplication is a little trickier. Let u = xy and 

let w = u − v > 0. 

We want to find x1 and y1 such that v = x1y1 and 

0 < x1 < x and 0 < y1 < y. 

Write x1 = x − a and y1 = y − b. 

We want v = (x − a)(y − b) 

                 = xy − (ay + bx) + ab 

                 = u − (ay + bx) + ab 

so w = ay + bx − ab. ☺ 

 

If we chose any b and defined a = 
w − bx

y − b
  then: 

ay + bx − ab would equal to w and so, working backwards, 

v = (x − a)(y − b)  XY. 

 This would be fine over ℚ, provided b  y but since 

we are working over ℚ+ we must ensure that 

w − bx, x − a and y − b are all positive. The fact that v and 

y − b are positive will ensure that x − a is positive so we 

only need to worry about w − bx and y − b. 
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We can achieve this by taking b = MIN






w

2x
,  

y

2
  and 

a = 
w − bx

y − b
 . 

We can verify that indeed v = (x − a)(y − b)  XY. 

 

The usual associative, commutative and distributive 

properties can easily we deduced from the corresponding 

properties for positive rational numbers.  An important 

property of the real numbers is completeness – something 

that distinguishes it from the rational numbers. 

 

Theorem 8 (COMPLETENESS): Every non-empty 

subset of the rational numbers that has an upper bound has 

a least upper bound. 

Proof: At this stage we can only prove it for the positive 

reals. 

Suppose that  is such a non-empty subset of ℝ+ that is 

bounded above. 

We have to work with sets at several levels.  

Positive rationals will be denoted by lower case letters. 

Positive real numbers are sets of positive rationals and 

will be written in upper case. Finally  is a set of positive 

reals, which is why we use a Greek symbol. I hope this 

will help to make it all clear! 

We must prove that  is a positive real. So in 

anticipation we will denote it by the symbol S. 
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S =  is non-empty: 

Let X   (OK as  is non-empty). 

X is a positive real number and so, by definition, it is non-

empty. 

Let x  X. Then x  . 

 

S =  is bounded above: 

 is bounded above. 

Let M be an upper bound for . This means that every 

element of  is less than or equal to M. 

Now M is a positive real and so is a set of positive 

rationals. 

By definition it is bounded above, say by the rational 

number m. 

Let x  S = . Then x  X for some X  . 

Since M is an upper bound for , X  M, in other words, 

X  M. 

Hence x  M. Since m is an upper bound for M, x  m. 

It follows that m is an upper bound for S = . 

 

S =  is an initial segment: 

Let x  S and let y  x. 

Then x  X for some X  S. 

Now, being a positive real, X is an initial segment and so 

y  X. 

Hence y  S = , 

This completes the proof that  is a positive real 

number. 
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S =  is an upper bound for . 

Let X  . Then X  S. 

But, for positive reals, this is the same as less than or 

equals. That is, X  S. 

 

S =  is the least upper bound for . 

Suppose that T is an upper bound for . 

Let x  S. Then x  X for some X  . 

Since T is an upper bound for , X  T. 

But X, T are positive reals and so this translates to 

X  T. Hence x  T. 

So S  T, which translates to S  T. 

So S is the least upper bound for . ☺ 

 

We can now show that for a positive rational 

number q the corresponding positive real number: 

{x | x < q} 

behaves exactly like the positive rational number itself 

and so we associate q with {x | x < q}. Within the positive 

real numbers we have a copy of the positive rational 

numbers. 

Hence the multiplicative identity of the positive 

reals is {x | x < 1} which we associate with the rational 

number 1. And the positive real {x | x2 < 2} has the 

property that its square is {x | x < 2} which we associate 

with the rational number 2. So we denote {x | x2 < 2} by 

2 and note that indeed it is the (positive) square root of 

2. 
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 We saw that the fraction 2, as we have defined it, is 

rather more complicated, when expressed in terms of the 

empty set, than the natural number 2. The real number 2 

is even worse! It’s the set of all fractions 
a

b
  where a < 2b. 

Just one of these elements is 
3

2
 . This in turn is the set of 

all ordered pairs of the form (3k, 2k). One of these 

elements is (3, 2) which is {{3}, {2, 3}}. Finally, one of 

these two elements is {2, 3} which is {{, {}}, {, 

{}, {, {}}}}. 

 

 But, as before, we don’t have to be embroiled in 

these complexities. It’s sufficient for us to be aware that 

everything we construct can be built up from the empty 

set. But whenever we have occasion to use the number 2 

in a piece of mathematics we don’t have to worry whether 

it is the real number 2, the rational number 2, or the 

natural number 2. They are all identified with one another 

and can be treated as if they are the same thing. 

 

There are many other properties that ought to be 

investigated but that is done in a standard course on 

analysis. Many of these follow from the completeness of 

the positive reals which we have proved. But now we 

move on to negative numbers. 
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§6.5. Zero and Negative Real Numbers 
 The construction that takes us from the positive real 

numbers to the whole real line is similar to the one that 

that took us from the natural numbers to the positive 

rationals. We take pairs of real numbers and define an 

equivalence relation. The real numbers are simply the 

equivalence classes. 

 The pair a, b will ultimately represent a − b 

which, depending on the relative sizes of a, b can give 

positive, negative or zero real numbers. But because the 

representation as a − b is not unique we must take 

equivalence classes. 

So take the set ℝ+  ℝ+ to be the set of all pairs of 

positive real numbers and define the relation  as follows: 

(a, b)  (c, d) if and only if a + d = b + c. 

I leave it as an exercise to prove that this is indeed an 

equivalence relation. Let x, y denote the equivalence 

class containing (x, y). So if a + d = b + c then 

a, b = c, d. 
Define addition, multiplication and ordering by: 

a, b + c, d = a + c, b + d; 

                          a, b. c, d = ac + bd, ad + bc; 
a, b  c, d if a + d  b + c. 

 

These definitions are motivated by the fact that: 

(a − b) − (c − d) = (a + c) − (b − d), 

    (a − b).(c − d) = (ac + bd) − (ad + bc) and 

                   a − b  c − d if and only if a + d  b + c. 
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 You know what lies ahead. We must show that 

these operations are well-defined and that the associative, 

commutative properties hold as well as all the other 

elementary properties. We don’t need to actually do this, 

except as an exercise. The main thing is to be convinced 

that it can be done! 

 

 We might be tempted to identify the positive real 

numbers with those real numbers of the form [x, 0] but, of 

course 0 is not positive. Instead we must identify 

x + 1, 1 with x. 

 

Theorem 9: F:R+ → R defined by F(x) = x + 1, 1 takes 

sums to sums and products to products. 

Proof: 

F(x) + F(y) = x + 1, 1 + y + 1, 1 

                   = x + y + 2, 2 

                   = x + y + 1, 1 since 

                                         (x + y + 2) + 1 = (x + y + 1) + 2 

                   = F(x + y). 

     F(x)F(y) = x + 1, 1].y + 1, 1 

                    = (x + 1)(y + 1) + 1, (x + 1) + (y + 1) 

                            = xy + x + y + 2, x + y + 2 

                            = xy + 1, 1 

                            = F(xy). 
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§6.6. Complex Numbers 
 We’re almost there. The last stage in the 

development of our number system is to extend the real 

numbers to the system of complex numbers, ℂ. This is by 

far the easiest stage of all. We define a complex number 

to be a pair of real numbers. There is no equivalence 

relation, and no equivalence classes needed. Complex 

numbers are just the pairs themselves, which we will write 

as [x, y] instead of the usual (x, y) to make it look more 

like the previous stages. 

 A complex number is a pair of real numbers [x, y]. 

Keeping in mind that we’ll eventually identify this with x 

+ iy, where i2 = −1, we make the following definitions: 

 

[a, b] + [c, d] = [a + c, b + d]; 

 [a, b] . [c, d] = [ac − bd, ad + bc]; 

 

 Note that we don’t define an ordering. There is no 

order relation that’s consistent with these algebraic 

operations. 

 

We identify the complex numbers of the form [x, 0] with 

the corresponding real numbers x and note that they 

behave the same. 

 

[x, 0] + [y, 0] =  [x + y, 0 + 0]  = [x + y, 0] and 

    [x, 0].[y, 0] = [xy − 0, 0 + 0] = [xy, 0]. 
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 The multiplicative identity is [1, 0], which we 

identify with the real number 1 and we define i = [0, 1]. 

Note that i2 = [−1, 0] which we identify with −1. 

The fact that [x, y] = [x, 0] + [0, 1].[y, 0] means we 

can identify [x, y] with x + iy. 

 

All that remains is to check out the basic properties 

of complex numbers and we’re finished. But probably by 

now you’re thoroughly bored with the whole process and 

are quite happy in just accepting the assurance “believe 

me, it works!” 

 

 Throughout all this construction, the various types 

of numbers are sets and sets of sets and sets of sets etc, all 

built out of the empty set. We started with the natural 

numbers and extended it to the positive rationals, then to 

the positive reals, then to all the reals and finally to the 

complex numbers. 

 

ℕ → ℚ+ → ℝ+ → ℝ → ℂ 

 It is interesting that this corresponds to the order in 

which these number systems were developed historically. 

 As we’ve constructed them these sets are not 

subsets of one another. But within each we can identify a 

subset that we can identify with the previous one, and so 

we consider these to be nested as follows: 

ℕ  ℚ+  ℝ+  ℝ  ℂ 
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Example 5: The complex number 2 is 

[2, 0] = {{2}, {2, 0}} where 0, 2 are in ℝ. 

The real number 2 is {(3 + k, 1 + k) | k  ℝ+} 

          = {{3 + k}, {1 + k, 1 + k}} where 1, 3. k are in ℝ+. 
The positive real number 3 is the set {x  ℚ+ | x < 3} 

where 3 is in ℚ+. 

The positive rational number 3 is 
3

1
  which is 

{(3k, k) | k  ℕ} = {{{3k}, {3k, k}} | k  ℕ} 

 where 3, k are in ℕ. 

The natural number 3 is {0, 1, 2} 

                = {, {}, {{}, {, {}}}}. 

 

To give a map of where we’ve come, here are the 

universes in which each number lives. Remember that 

sets of elements of S are in S and pairs of elements of 

S are in 2S and equivalence classes of pairs of elements 

of S are in 3S. 

Numbers are elements of 

natural numbers ℕ 

positive rationals 3 ℕ 
positive reals 4 ℕ 
reals 7 ℕ 
complex numbers 9 ℕ 

 


